Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4'-(4-Chlorophenyl)-3"-ethyl-1'-methyl-1H-indole-3-spiro-2'-pyrrolidine-3'-spiro$5^{\prime \prime}$-[1,3]thiazole-2(3H), $2^{\prime \prime}\left(3^{\prime \prime} H\right), 4^{\prime \prime}\left(5^{\prime \prime} H\right)$ trione benzene sesquisolvate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$, was synthesized by the intermolecular [3+2]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 5-(4-chlorobenzylidene)-3-ethylthiazolidine-2,4dione. In the molecule of the title compound, an approximately planar 2 -oxindole system, a pyrrolidine ring in an envelope conformation, and a planar thiazolidine ring are joined via two spiro-junctions. The molecules in the crystal are linked by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond [$\mathrm{N} \cdots \mathrm{N}$ $=3.071$ (3) \AA] , forming infinite chains running along the c axis. One of the solvate benzene molecules occupies a special position on an inversion centre.

Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit interesting biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported. The compound was synthesized by the intermolecular [$3+2$]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 5-(4-chlorobenzylidene)-3-ethylthiazolidine-2,4-dione.

Received 14 July 2003
Accepted 26 August 2003
Online 30 August 2003

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
R factor $=0.057$
$w R$ factor $=0.155$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The molecular structure of (I); displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted and solvate benzene molecules are not shown.
plane of the thiazolidine cycle by 0.027 (2) and -0.155 (2) \AA, respectively.

There is one 'active' H atom in the molecule which participates in the intermolecular $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2{ }^{\mathrm{i}}$ hydrogen bond [symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$] (Table 1). This hydrogen bond links the molecules of (I) in to infinite chains running along the c axis (Fig. 2).

Experimental

A mixture of 5-(4-chlorobenzylidene)-3-ethylthiazolidine-2,4-dione (2 mmol), prepared according to Lo et al. (1958), isatin (2 mmol), and sarcosine (2 mmol) was refluxed in dioxane (30 ml) until the disappearance of the starting material (as monitored by thin-layer chromatography). When the reaction was complete, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate 5:1) to give the title compound, (I). M.p. 476 K ; IR (KBr): 3358.3 (-NH), 1750.2, 1718.7, $1685.9(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): 0.87(t, 3 \mathrm{H}$, CH_{3}), $2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH} 3), 3.40-3.50(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH} 2), 3.61$ ($d d, J=$ $9.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Hc}), 4.03(d d, J=10.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(d d, J=10.2$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-7.38(m, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.41(b r, 1 \mathrm{H},-\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (p.p.m.): 12.68, 35.18, 36.95, 51.33, 58.29, 72.12, 79.90, 110.31, 123.13, 123.22, 127.01, 128.81, 130.61, 131.46,133.69,136.16, 142.39, $169.38,175.42,177.50 .20 \mathrm{mg}$ of (I) were dissolved in 15 ml of benzene and the solution was kept at room temperature for 15 d . Slow evaporation of the solvent afforded colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$	$D_{x}=1.266 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=559.08$	Mo K 2 radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 886
$a=11.132(3) \AA$	reflections
$b=22.785(7) \AA$	$\theta=2.7-23.1^{\circ}$
$c=12.515(4) \AA$	$\mu=0.24 \mathrm{~mm}^{-1}$
$\beta=112.477(5)^{\circ}$	$T=293(2) \mathrm{K}$
$V=2933.2(15) \AA^{3}$	Parallelepiped, colorless
$Z=4$	$0.42 \times 0.40 \times 0.34 \mathrm{~mm}$

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$
M,
$a=11.132$ (3) A
$b=22.785$ (7) \AA
$c=12.515$ (4) \AA
$V=2933.2(15) \AA^{3}$
$Z=4$
> $D_{x}=1.266 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 886
> - 23.1°
> $\theta=2.7-23.1$
> $T=293$ (2) K
> Parallelepiped, colorless
> $0.42 \times 0.40 \times 0.34 \mathrm{~mm}$

Figure 2
The crystal packing diagram for (I), viewed along the a axis. All H atoms, with the exception of atom H 3 , participating in the hydrogen bond, have been omitted. Hydrogen bonds are shown as dashed lines.

Data collection

Bruker SMART CCD area detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.796, T_{\text {max }}=0.923$
14461 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.155$
$S=1.02$
5070 reflections
370 parameters

5070 independent reflections
2701 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 13$
$k=-27 \rightarrow 15$
$l=-14 \rightarrow 14$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{\mathrm{m}} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1

Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.39	$3.071(3)$	136
Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.				

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.98 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$. They were included in the refinement in the riding-model approximation, with $U_{\text {iso }}=1.2$ (1.5 for methyl) times $U_{\text {eq }}$ of the carrier atom. Both solvate benzene molecules refined poorly. In the final model, the benzene molecule in the general position was included with the fixed geometry of a regular hexagon $(\mathrm{C}-\mathrm{C}=$ $1.39 \AA$). The solvate benzene molecule located about an inversion centre was represented as two-component disorder with approximately equal occupancy factors, which refined to 0.49 (3) and 0.51 (3). The bond lengths in both components of the disordered benzene were constrained to 1.39 (1) \AA.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve

organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.
Lo, C. P., Shropshire, E. Y. \& Groxall, W. J. (1958). J. Am. Chem. Soc. 80, 973974.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

